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A LASER MODULATOR 

The ob jec t ive  of the  program was t o  develop a laser modulator 

capable of producing 40% depth of modulation for an applied vol tage  

of 400 v o l t s  rms over a bandwidth from dc t o  6 Mc/s. 

a p a r a l l e l  e f f o r t  on both Gallium Arsenide and Gal l im Phosphide 

The program w a s  

e lec t ro-opt ic  c r y s t a l s .  In  addi t ion ,  some work w a s  done on Potassium 

Tantalate Niobate (KTN) near  t h e  end of t he  program. 

The theory of t h e  l i n e a r  e lec t ro-opt ic  e f f e c t  i n  Zincblende 

c r y s t a l s  such as G a l l i u m  Arsenide and G a l l i u m  Phosphide i s  described 

i n  the  attached paper "Cuprous Chloride Light Modulators" by S t e r z e r ,  

B l a t t n e r ,  and Mini ter  . The theory of t h e  quadra t ic  e lec t ro-opt ic  (1) 

e f f e c t  i n  perovski te  c r y s t a l s  such as KTN i s  described by Geusic, e t  

a,''). 

The Gallium Arsenide c r y s t a l s  w e r e  grown by the  hor izonta l  

The G a l -  Bridgeman t e ~ h n i q u e ' ~ )  from elemental Gallium and Arsenic. 

lium Phosphide c r y s t a l s  w e r e  grown both by the  Czochralski technique 

from elemental Gallium i n  a Phosphorous atmosphere, 

vapor deposi t ion technique(5) using Gallium Chloride and Phosphine 

i n  a Hydrogen c a r r i e r  gas. 

r a l s k i  technique i n  a Platinum boat from Potassium Carbonate, Tan- 

(4 1 
and by the  

The KTN c r y s t a l  w a s  grown by the  Czoch- 

talum Pentoxide, and Niobium Pentoxide (2) . 
The bes t  modulator c r y s t a l  produced under t h i s  program was 

a Gallium Arsenide c r y s t a l  which was incorporated i n t o  t h e  modulator 

shown i n  Figures 1 and 2,  which operated i n  the  wavelength range from 

0.9 t o  3.0 microns. 

for 400 v o l t s  rms modulation signa1,from d c  t o  over 20 Mc/s. 

The modulator gave over 50% depth of modulation 

The 
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performance curves of the  modulator are shown i n  Figures  3 and 4. 

A paper(6) descr ibing t h i s  modulator w i l l  be presented a t  the  1965 

In t e rna t iona l  Solid S t a t e  C i r c u i t s  Conference a t  Phi ladelphia  i n  

February 1966, 

The e lec t ro-opt ic  c o e f f i c i e n t ,  r41,of G a l l i u m  Arsenide w a s  measured 

i n  the  set-up shown i n  Fist ire  5 and r e i > l t s  p l ~ t t c d  LE Figure 5 .  

A summary of the  paper i s  at tached t o  t h i s  repor t .  
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The upper l i m i t  of th ree  microns i n  the  opera t ing  wave- 

length  i s  caused  by absorption in  t h e  Calcite Glan Thompson polar izers .  

The G a l l i u m  Arsenide c r y s t a l  i t s e l f  i s  t ransparent  ou t  t o  16 microns, 

as shown i n  Figures  7 and 8,  and could be used f o r  modulation a t  

t h e s e  longer wavelengths provided s u i t a b l e  po la r i ze r s  and quarter-  

wave plates could be obtained. 

The transmission range of G a l l i u m  Phosphide i s  shown i n  

Figures  7 and 8. 

making it p o t e n t i a l l y  useful  fo r  modulating v i s i b l e  l a s e r s ,  such a s  

t h e  Helium-Neon l a s e r  a t  6328 g. 
grown under t h i s  cont rac t  w e r e  of good o p t i c a l  q u a l i t y ,  and took a 

good o p t i c a l  po l i sh ,  b u t  t h e i r  r e s i s t i v i t y  w a s  too  low f o r  modulation 

purposes. 

d i f fus ion  of Copper, a technique which produces high r e s i s t i v i t y  G a l -  

l ium A r ~ e n i d e ' ~ ) ,  but no crystals w e r e  obtained which could withstand 

more than 30 v o l t s  before drawing excessive cur ren t .  

The short  wavelength cut-off occurs  at  6000 8, 

The Gallium Phosphide c r y s t a l s  

Several  a t tempts  were made t o  compensate t h e  c r y s t a l s  by 

In  addi t ion  t o  t h e  e f f o r t  on G a l l i u m  Phosphide, a c r y s t a l  

of R T N w a s  grown, c u t ,  pol ished,  and electroded.  The transmission 

of KTN extends throughout the  v i s i b l e  and near  i n f r a red ,  as shown i n  
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Figures  7 and 8. 

room temperature, and consequently it had t o  be heated s l i g h t l y  t o  

opera te  i n  the  p a r a e l e c t r i c  phase. The c r y s t a l  showed a good d e a l  

of s t r a i n ,  b u t  a s izeable  e lectro-opt ic  e f f e c t  could be observed 

v i s u a l l y  when 300 v o l t s  were applied; the  magnitude of t h e  e f f e c t  

The C u r i e  point of the  c r y s t a l  w a s  s l i g h t l y  above 

depending on haw c lose  the  c rys t a l  temperature was t o  the  C u r i e  point.  

Although t h e  c r y s t a l  w a s  t ransparent ,  it sca t te red  a l a s e r  beam so 

badly t h a t  no attempt was made t o  incorporate  it i n t o  a modulator. 

In addi t ion ,  t h e  c rys t a l  exh i t i t ed  many p iezoe lec t r i c  

resonances, which would cause severe d i s t o r t i o n  i n  a baseband modu- 

l a t i o n  system. Subcarr ier  modulation would be required t o  raise t h e  

modulation spectrum frequencies  above the  p i ezoe lec t r i c  resonant f re -  

quencie s. 

Of t h e  th ree  mater ia l s  inves t iga ted ,  Gallium Arsenide i s  t h e  

most usefu l  for laser modulation because of t he  advanced s t a t e  of i t s  

c r y s t a l  technology. It has  t h e  po ten t i a l  t o  modulate at wavelengths 

a s  great a s  16 microns and it should be the  f i r s t  choice f o r  these  

long wavelength appl icat ions.  A t  v i s i b l e  wavelengths, KTN has t h e  ad- 

vantage over G a l l i u m  Phosphide of having a higher r e s i s t i v i t y ,  shor te r  

wavelength cut-off i n  t h e  v i s i b l e ,  and l a r g e r  e lectro-opt ic  e f f e c t .  

It has t h e  disadvantages of requir ing temperature cont ro l  and having 

many p iezoe lec t r i c  resonances. The r e s i s t i v i t y  of G a l l i u m  Phosphide 

can probably be raised considerably with a compensating dopant, al- 

though none i s  known a t  t h e  present.  

r equ i r e  more deve lopen t  t o  produce c r y s t a l s  with t h e  exce l len t  o p t i c a l  

p rope r t i e s  of e x i s t i n g  G a l l i u m  Arsenide. 

KTN and Gallium Phosphide both 

9620 F 
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Fig. 3 - RCA 5-2036 Solid-state Electro-Optic Modulator. Performance 
with 1.2 micron. 
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Fig. 4 - RCA 5-2036 Solid-state Electro-optic Modulator. Performance 
with different quarter-wave plates. These graphs correspond to the upper 
graph of Fig. 3. 
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GaAs e lec t ro-opt ic  modulators having a l i n e a r  aper ture  of 

3 mm x 3 mm and an angular aper ture  g rea t e r  than  12 degrees are 

descr2bed. In  t he  wavelength range from one t o  t h r e e  microns 

modulation depths i n  excess of 50% a r e  achieved with 400 v o l t s  rms 

modulating s igna l  from dc t o  beyond 20 Mc/s. 

* The work reported here  was sponsored by t h e  A i r  Force Avionics 

Laboratory, Research and Technology Divis ion,  A i r  Force Systems 

Command, Wright-Patterson A i r  Force Base, Ohio, under Contract 

No. AF33(615)-1096 and by t h e  National Aeronautics and Space 

Administration, Goddard Space Fl ight  Center,  Greenbelt ,  Maryland, 

under Contract NAS-5-9620. 
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Thomas E. Walsh - G a A s  Modulators 

SUMMARY 

The small s i ze  and poor electrical and o p t i c a l  q u a l i t y  of 

most e lec t ro-opt ic  c r y s t a l s  has  l i m i t e d  t h e i r  use as laser modulators. 

We have used l a rge  s ing le  c r y s t a l s  of G a l l i u m  Arsenide with exce l l en t  

o p t i c a l  q u a l i t y  and uniformly high r e s i s t i v i t y  t o  cons t ruc t  p r a c t i c a l  

e iec t ro-opt ic  modulators for the inf ra red .  

G a l l i u m  Arsenide i s  a hard,  non-hygroscopic c r y s t a l  which 

e x h i b i t s  a l i n e a r  e lec t ro-opt ic  e f f e c t  and i s  t ransparent  between 0.9 

and 16 microns i n  t h e  inf ra red .  S t r a i n  f r e e  G a l l i u m  Arsenide can be 

grown i n  seeded  i ngo t s  with r e s i s t i v i t i e s  exceeding lo6 ohm cm. The 

c r y s t a l s  are e a s i l y  polished t o  b e t t e r  than one-tenth wavelength of 

v i s i b l e  l i g h t  without introducing appreciable  s t r a in .  Figure (1) 

i l l u s t r a t e s  t he  in f r a red  transparency and o p t i c a l  q u a l i t y  of t hese  

c rys t a l s .  It i s  an inf ra red  photograph taken wi th  an image converter  

tube of a sample of G a l l i u m  Arsenide on a metal scale.  The q u a l i t y  

i s  comparable t o  t h a t  of good o p t i c a l  glass .  

Figure ( 2 )  shows a complete modulator cons i s t ing  of a G a l -  

l i u m  Arsenide c r y s t a l  and a mica quarter-wave p l a t e  placed between 

two calcite Glan Thompson polar izers .  The G a l l i u m  Arsenide c r y s t a l  

i s  mounted on t h e  end of a 50 ohm coaxia l  l i n e  and p resen t s  a 3 

picofarad capac i t ive  load t o  the  l ine .  The openings i n  the  mount 

f o r  passage of t h e  laser beam are  cut-off waveguides a t  the  modu- 

l a t i o n  frequencies  t o  prevent r ad ia t ion  of t h e  modulating s ignal .  

The angular aper ture  is l i m i t e d  by t he  s i z e  of t h e  Glan Thompson 

9620 F 



Thomas E. Wafsh - GaAs Modulators 
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p o l a r i z e r s  which have a 1 cm aper ture .  

lator wi th  a 1.2 micron quarter-wave p l a t e  is i l l u s t r a t e d  i n  Figure 

(3). which shows t h e  change i n  t ransmission produced by a 600 volt  

peak s igna l .  

by using d i f f e r e n t  wave p la tes .  

t r ansn i s s ion  produced by a 600 v o l t  s igna l  when d i f f e r e n t  wave 

p l a t e s  are used. 

The performance of t he  modu- 

The wavelength response of t h e  modulator can be shaped 

Figure (4) shows t h e  change i n  

The e lec t ro-opt ic  coe f f i c i en t  r41  w a s  measured as a funct ion 

of wavelength and found t o  be r e l a t i v e l y  constant  (Figure 5), in- 

d i ca t ing  t h a t  t h e  opera t ing  wavelength can be increased a t  t h e  ex- 

pense of a proport ionate  increase i n  t h e  operat ing vol tage.  

9620 F 



Fig. -4-1 - Infrared photograph of GaAs crystal resting on scale. 
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Fig. A-3 - RCA 5-2036 Solid-state Electro-Optic Modulator. Performance 
with 1.2 micron. 
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Fig. A-4 - RCA 5-2036 Solid-state Electro-optic Modulator. Performance 
with different quarter-wave plates. These graphs correspond to the upper 
graph of Fig. A-3. 
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